Log in
Sign up for FREE
arrow_back
Library

Algebra 2 4-4 Guided Practice: Factoring Quadratic Expressions

star
star
star
star
star
Last updated about 3 years ago
36 questions
3
10
3
3
3
10
10
10
3
3
Question 1
1.

Video Check: Select all that apply with regards to the video embedded directly above this item.

Question 2
2.

Solve It! In a game, you see the two cards shown.


You will get two other cards with numbers.

You win if:
1. The product of your two numbers equals the number on one card shown
AND
2. The sum of your two numbers equals the number on the other card shown.

What should your two cards be for you to win the game?
Drag and drop the card numbers on the left to form two winning hands on the right.

  • 1
  • 2
  • 3
  • 4
  • 5
  • Winning hand (with sum 6)
  • Winning hand (with sum 5)
Question 3
3.

Video Check: Select all that apply with regards to the video embedded directly above this item.

10
Question 4
4.

Take Note: Define factoring.
You may use the canvas to help illustrate your written definition.

2
2
2
2
4
5
10
Question 11
11.

Problem 1 Got It?

10
Question 12
12.

Problem 1 Got It?

10
Question 13
13.

Problem 1 Got It?

Question 14
14.

Video Check: Select all that apply with regards to the video embedded directly above this item.

10
Question 15
15.

Take Note: Define greatest common factor (GCF) of an expression.
You may use the canvas to help illustrate your written definition.

10
Question 16
16.

Take Note: Provide an example of a simplified binomial that has a GCF of 7x.

10
Question 17
17.

Problem 2 Got It?

10
Question 18
18.

Problem 2 Got It?

10
Question 19
19.

Problem 2 Got It?

Question 20
20.

Video Check: Select all that apply with regards to the video embedded directly above this item.

10
Question 21
21.

Take Note: Summarize the process for factoring a quadratic trinomial of the form: ax^{2}+bx+c, \ \ a\ne1
when there is no common factor.
You may use the canvas to help illustrate your written response.

Question 22
22.

Problem 3 Got It? What is the factored form of the expression? Check your answers.

Question 23
23.

Problem 3 Got It? What is the factored form of the expression? Check your answers.

Question 24
24.

Problem 3 Got It? Reasoning: Can you factor the expression into a product of two binomials? Explain.

Question 25
25.

Video Check: Select all that apply with regards to the video embedded directly above this item.

10
Question 26
26.

Take Note: Define perfect square trinomial.
You may use the canvas to help illustrate your written definition.

10
10
5
Question 29
29.

Take Note: Provide an example of a perfect square trinomial written in standard form.

10
Question 30
30.

Problem 4 Got It?

Question 31
31.

Video Check: Select all that apply with regards to the video embedded directly above this item.

10
Question 32
32.

Take Note: Define difference of two squares.
You may use the canvas to help illustrate your written definition.

10
Question 33
33.

Take Note: Summarize the process for recognizing a difference of two squares.
You may use the canvas to help illustrate your written definition.

5
10
Question 35
35.

Problem 5 Got It?

10
Question 36
36.

🧠 Retrieval Practice:
Summarize the mathematical content of this lesson. What topics, ideas, and vocabulary were introduced?

Question 5
5.

Identify the first terms in the pair of binomials.

Question 6
6.

Identify the outer terms in the pair of binomials.

Question 7
7.

Identify the inner terms in the pair of binomials.

Question 8
8.

Identify the last terms in the pair of binomials.

Question 9
9.

Take Note: Place the steps used in the FOIL method in the correct order.

  1. last
  2. first
  3. inner
  4. outer
Question 10
10.

Take Note: Summarize the process of using the FOIL method to multiply binomials.
You may illustrate your explanation on the canvas, but be sure to describe it in the response field as well.

Question 27
27.

Take Note: What do you know about the first and third terms of all perfect square trinomials?
You may use the canvas to help illustrate your written definition.

Question 28
28.

Take Note: What do you know about the middle term of all perfect square trinomials?
You may use the canvas to help illustrate your written definition.

Question 34
34.

Take Note: Provide an example of a difference of two squares written in standard form.