WB2.3 - Product and Quotient Rule
star
star
star
star
star
Last updated over 5 years ago
8 questions
1
\frac{d}{dw} \left( \frac{3w-4}{2w+3} \right)
\frac{d}{dw} \left( \frac{3w-4}{2w+3} \right)
1
Find k'(x) if k(x)=\left(x^{2}+4 \right)\left(3x^{4}-5x+2\right).
Find k'(x) if k(x)=\left(x^{2}+4 \right)\left(3x^{4}-5x+2\right).
1
\frac{d}{dx} \left( g(x)=\frac{x+4}{x-2} \right)
\frac{d}{dx} \left( g(x)=\frac{x+4}{x-2} \right)
1
Find the derivative of f(x)=\left(4x-1 \right) \left(x-1\right)^{-1}.
Find the derivative of f(x)=\left(4x-1 \right) \left(x-1\right)^{-1}.
1
Find the normal slope at x=2 of f(x)=4x^{3}-2x^{2}-8x+3.
Find the normal slope at x=2 of f(x)=4x^{3}-2x^{2}-8x+3.
1
Find the tangent slope at x=-2 of f(x)=4x^{3}-2x^{2}-8x+3.
Find the tangent slope at x=-2 of f(x)=4x^{3}-2x^{2}-8x+3.
1
Find f'(2) of f(x)=\frac{3x-9}{4x^{2}+2}.
Find f'(2) of f(x)=\frac{3x-9}{4x^{2}+2}.
1
Explain the procedure here \frac{d}{dx} \left( \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{x^{3}} \right). (You do not have to find the derivative).
Explain the procedure here \frac{d}{dx} \left( \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{x^{3}} \right). (You do not have to find the derivative).