WB2.4 - Trig, Exponential and Log Derivatives
star
star
star
star
star
Last updated over 5 years ago
8 questions
1
Find g'(\pi) given g(t)=7t+\cos(t)\sin(t).
Find g'(\pi) given g(t)=7t+\cos(t)\sin(t).
1
Find the tangent slope of \frac{\tan(x)}{x} at x=\frac{\pi}{2}.
Find the tangent slope of \frac{\tan(x)}{x} at x=\frac{\pi}{2}.
1
Find the velocity, acceleration, jerk and jounce of s(t)=\cos(t).
Find the velocity, acceleration, jerk and jounce of s(t)=\cos(t).
1
\frac{d}{dx} \left( \frac{3^x}{\cos(x)} \right)
\frac{d}{dx} \left( \frac{3^x}{\cos(x)} \right)
1
\frac{d}{ds} \left( e^{s} \ln(s) \right)
\frac{d}{ds} \left( e^{s} \ln(s) \right)
1
\frac{d}{dx} \left( \sec(x)\csc(x) \right)
\frac{d}{dx} \left( \sec(x)\csc(x) \right)
1
Find h'(\pi) given that h(x)=\cot(x).
Find h'(\pi) given that h(x)=\cot(x).
1
Find b'(2) given that b(q) = \frac{2^{q}}{\log_2(q)}.
Find b'(2) given that b(q) = \frac{2^{q}}{\log_2(q)}.