HPC WB4.2 - Evaluating Inverse Trig
star
star
star
star
star
Last updated about 5 years ago
6 questions
1
Find the exact value of each inverse within its range by using the unit circle:
a. \arcsin\left(-\frac{\sqrt{3}}{2}\right)
b. \cos\left(2\sin^{-1}\left( \frac{1}{2} \right)\right)
Find the exact value of each inverse within its range by using the unit circle:
a. \arcsin\left(-\frac{\sqrt{3}}{2}\right)
b. \cos\left(2\sin^{-1}\left( \frac{1}{2} \right)\right)
1
Find the exact value of each inverse within its range by using the unit circle:
a. \csc^{-1}\left( -\sqrt{2} \right)
b. \sin\left( \tan^{-1} \left(-1 \right)\right)
Find the exact value of each inverse within its range by using the unit circle:
a. \csc^{-1}\left( -\sqrt{2} \right)
b. \sin\left( \tan^{-1} \left(-1 \right)\right)
1
Find the exact value of each inverse within its range by using the unit circle:
a. \csc^{-1} \left(-\frac{2\sqrt{3}}{3} \right)
b. \arcsin\left(\cos\left(\frac{\pi}{3}\right)\right)
Find the exact value of each inverse within its range by using the unit circle:
a. \csc^{-1} \left(-\frac{2\sqrt{3}}{3} \right)
b. \arcsin\left(\cos\left(\frac{\pi}{3}\right)\right)
1
Find the exact value of each inverse within its range by using the unit circle:
a. \sec^{-1}(-2)
b. \arccos\left(\tan\left(\frac{\pi}{4}\right)\right)
Find the exact value of each inverse within its range by using the unit circle:
a. \sec^{-1}(-2)
b. \arccos\left(\tan\left(\frac{\pi}{4}\right)\right)
1
Find the exact value of each inverse within its range by using the unit circle:
a. \text{arccot}(1)
b. \cos\left(\tan^{-1}\left(\sqrt{3}\right)\right)
Find the exact value of each inverse within its range by using the unit circle:
a. \text{arccot}(1)
b. \cos\left(\tan^{-1}\left(\sqrt{3}\right)\right)
1
Find the exact value of each inverse within its range by using the unit circle:
a. \text{arccot}(-1)
b. \tan^{-1}\left(\cos\left(\pi\right)\right)
Find the exact value of each inverse within its range by using the unit circle:
a. \text{arccot}(-1)
b. \tan^{-1}\left(\cos\left(\pi\right)\right)