HPC WB5.7 - Rational Function End Behavior
star
star
star
star
star
Last updated almost 5 years ago
6 questions
1
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{-x^2-3x+4}{x^2+x-6}.
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{-x^2-3x+4}{x^2+x-6}.
1
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{x+4}{-x^2-6x-8}.
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{x+4}{-x^2-6x-8}.
1
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{x^3+x^2-12x}{-2x^2+8}.
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{x^3+x^2-12x}{-2x^2+8}.
1
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{1}{3x-6}.
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{1}{3x-6}.
1
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{x^2-3x+2}{4x-12}.
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{x^2-3x+2}{4x-12}.
1
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{x^2-4}{2x^2-4x}.
State the horizontal/slant asymptote(s) and find \lim\limits_{x\to\infty} f(x) and \lim\limits_{x\to-\infty} f(x) of f(x)=\frac{x^2-4}{2x^2-4x}.