7.1.5

Last updated over 1 year ago
15 questions
1

1. Rectangle P, Q, R, and S are scaled copies of one another. For each pair, decide if the scale factor from one to the other is greater than 1, equal to 1, or less than 1.

a) from P to Q

1

1. Rectangle P, Q, R, and S are scaled copies of one another. For each pair, decide if the scale factor from one to the other is greater than 1, equal to 1, or less than 1.

b) from P to R

1

1. Rectangle P, Q, R, and S are scaled copies of one another. For each pair, decide if the scale factor from one to the other is greater than 1, equal to 1, or less than 1.

c) from Q to S

1

1. Rectangle P, Q, R, and S are scaled copies of one another. For each pair, decide if the scale factor from one to the other is greater than 1, equal to 1, or less than 1.

d) from Q to R

1

1. Rectangle P, Q, R, and S are scaled copies of one another. For each pair, decide if the scale factor from one to the other is greater than 1, equal to 1, or less than 1.

e) from S to P

1

1. Rectangle P, Q, R, and S are scaled copies of one another. For each pair, decide if the scale factor from one to the other is greater than 1, equal to 1, or less than 1.

f) from R to P

1

1. Rectangle P, Q, R, and S are scaled copies of one another. For each pair, decide if the scale factor from one to the other is greater than 1, equal to 1, or less than 1.

g) from P to S

1

2. Triangle S and Triangle L are scaled copies of one another.

a) What is the scale factor from S to L?

1

2. Triangle S and Triangle L are scaled copies of one another.

b) What is the scale factor from L to S?

1

2. Triangle S and Triangle L are scaled copies of one another.

c) Triangle M is also a scaled copy of S. The scale factorfrom S to M is 3/2. Whaat is the scale factor from M to S?

1

3. Are two squares with the same side lengths scaled copies of one another? Explain your reasoning.

1

4. Quadrilateral A has side lengths 2, 3, 5, and 6. Quadrilateral B has side lengths 4, 5, 8, and 10. Could one of the quadrilaterals be a scaled copy of the other? Explain.

3

5. Select ALL the ratios that are equivalent to the ratio 12:3. Explain how you know in the space provided.

1

Exit Ticket
A rectangle that is 2 inches by 3 inches has been scaled by a factor of 7.

1. What are the side lengths of the scaled copy?

1

Exit Ticket
A rectangle that is 2 inches by 3 inches has been scaled by a factor of 7.

2. Suppose you want to scale tthe copy back to its original size. What scale factor should you use?