2.4 Worksheet
star
star
star
star
star
Last updated over 3 years ago
41 questions
1
\angle{1} and \angle {2} are a linear pair.
\angle{1} and \angle {2} are a linear pair.
1
If m\angle{A} = 90o, then \angle{A} is a right angle.
If m\angle{A} = 90o, then \angle{A} is a right angle.
1
XY + YZ = XZ
XY + YZ = XZ
1
If lines x and y are perpendicular, then they form a right angle.
If lines x and y are perpendicular, then they form a right angle.
1
If JK = MN, then JK \cong MN
If JK = MN, then JK \cong MN
1
If \angle{C} and \angle{D} are complementary, then m\angle{C} + m\angle{D} = 90o.
If \angle{C} and \angle{D} are complementary, then m\angle{C} + m\angle{D} = 90o.
1
\angle{1} and \angle{2} are vertical angles.
\angle{1} and \angle{2} are vertical angles.
1
If L is on the interior of \angle{JKM}, then \angle{JKL} + \angle{LKM} = \angle{JKM}
If L is on the interior of \angle{JKM}, then \angle{JKL} + \angle{LKM} = \angle{JKM}
1
If m\angle{VWX} + m\angle{XWZ} = 180o, then they are supplementary.
If m\angle{VWX} + m\angle{XWZ} = 180o, then they are supplementary.
1
If P is the midpoint of \overline{MQ}, then MP = PQ.
If P is the midpoint of \overline{MQ}, then MP = PQ.
1
If \overrightarrow{BD} is a bisector of \angle{ABC}, then \angle{ABD} = \angle{DBC}.
If \overrightarrow{BD} is a bisector of \angle{ABC}, then \angle{ABD} = \angle{DBC}.
1
If lines c and d form a right angle, then they are perpendicular.
If lines c and d form a right angle, then they are perpendicular.
1
EF + FG = EG
EF + FG = EG
1
If JK \cong MN, then JK = MN
If JK \cong MN, then JK = MN
1
If \angle{1} is a right angle, then m\angle{1} = 90o.
If \angle{1} is a right angle, then m\angle{1} = 90o.
1
\angle{GFH} and \angle{HFJ} are a linear pair
\angle{GFH} and \angle{HFJ} are a linear pair
1
If m\angle{ABC} + m\angle{CBD} = 90o, then they are complementary.
If m\angle{ABC} + m\angle{CBD} = 90o, then they are complementary.
1
If line r is a bisector of \overline{AB} at point X, then AX = XB.
If line r is a bisector of \overline{AB} at point X, then AX = XB.
1
If \angle{4} and \angle{5} are supplementary, then m\angle{4} + m\angle{5} = 180o.
If \angle{4} and \angle{5} are supplementary, then m\angle{4} + m\angle{5} = 180o.
1
\angle{RST} and \angle{VSQ} are vertical angles.
\angle{RST} and \angle{VSQ} are vertical angles.
1
If AB = CD and CD = XY, then AB = XY
If AB = CD and CD = XY, then AB = XY
1
If x - 7 = 10, then x = 17.
If x - 7 = 10, then x = 17.
1
If \angle{WXY} and \angle{YXZ} are complementary, then m\angle{WXY} + m\angle{YXZ} = 90o.
If \angle{WXY} and \angle{YXZ} are complementary, then m\angle{WXY} + m\angle{YXZ} = 90o.
1
If H is the midpoint of \overline{CD}, then CH = HD
If H is the midpoint of \overline{CD}, then CH = HD
1
\angle{A} = \angle{A}
\angle{A} = \angle{A}
1
If MP = PQ, then MP \cong PQ
If MP = PQ, then MP \cong PQ
1
If x = 3 and 3x = z, then 9 = z
If x = 3 and 3x = z, then 9 = z
1
JK + KL = JL
JK + KL = JL
1
If m\angle{1} + m\angle {2} = 180o, then they are supplementary.
If m\angle{1} + m\angle {2} = 180o, then they are supplementary.
1
If m\angle{C} = m\angle {D}, then m\angle{D} = m\angle {C}.
If m\angle{C} = m\angle {D}, then m\angle{D} = m\angle {C}.
1
If 4d = 36, then d = 9
If 4d = 36, then d = 9
1
6(x - 3) = 6x - 18
6(x - 3) = 6x - 18
1
If \overrightarrow{RS} is a bisector of \angle{QRT}, then \angle{QRS} = \angle{SRT}.
If \overrightarrow{RS} is a bisector of \angle{QRT}, then \angle{QRS} = \angle{SRT}.
1
If S is on the interior of \angle{ABC}, then \angle{ABS} + \angle{SBC} = \angle{ABC}.
If S is on the interior of \angle{ABC}, then \angle{ABS} + \angle{SBC} = \angle{ABC}.
1
If m\angle{1} = 90o, then it is a right angle.
If m\angle{1} = 90o, then it is a right angle.
1
a + a + a + a + a = 5a
a + a + a + a + a = 5a
1
If b + 2 = 13, then b = 11
If b + 2 = 13, then b = 11
1
If lines j and k are perpendicular, then they form right angles.
If lines j and k are perpendicular, then they form right angles.
1
MN + NP = MP
MN + NP = MP
1
If a = 3 and b = 10a + c, then b = 30 + c.
If a = 3 and b = 10a + c, then b = 30 + c.
1
If \overleftrightarrow{EF} bisects \overline{PQ} at point M, then PM = MQ.
If \overleftrightarrow{EF} bisects \overline{PQ} at point M, then PM = MQ.