P3.3: Std to Vertex Form
star
star
star
star
star
Last updated almost 4 years ago
11 questions
Note from the author:
Rewrite each parabola equation in vertex form. Use "y=..." format, no spaces.
Watch this video to review how to find a parabola's vertex form.
Rewrite each parabola equation in vertex form. Use "y=..." format, no spaces.
Watch this video to review how to find a parabola's vertex form.
1
y = x^{2} + 4x - 1
y = x^{2} + 4x - 1
1
y=x^{2}-12x+36
y=x^{2}-12x+36
1
y=x^{2}-2x+5
y=x^{2}-2x+5
1
y=-x^{2}+6x-10
y=-x^{2}+6x-10
1
y=\frac{1}{2}x^{2}-4x+7
y=\frac{1}{2}x^{2}-4x+7
1
y=x^{2}+10x+18
y=x^{2}+10x+18
1
y=-x^{2}+4x-6
y=-x^{2}+4x-6
1
y=-2x^{2}+8x-1
y=-2x^{2}+8x-1
1
y=3x^{2} + 6x
y=3x^{2} + 6x
1
f(x) = x^{2}+4x-7
The vertex is at __________
The vertex is a __________
The axis of symmetry is __________
The function is increasing on the interval __________
The function is decreasing on the interval __________
As x\rightarrow\infty, f(x) \rightarrow __________
As x\rightarrow -\infty, f(x) \rightarrow __________
1
f(x) = -2x^{2}+4x
The vertex is at __________
The vertex is a __________
The axis of symmetry is __________
The function is increasing on the interval __________
The function is decreasing on the interval __________
As x\rightarrow\infty, f(x) \rightarrow __________
As x\rightarrow -\infty, f(x) \rightarrow __________