The Therm
Gas companies in the U.S. often measure sales in terms of “thermal units” or therms. One therm is defined as 100,000 Btu, and natural gas at normal temperature and pressure has a heat value of 1,030 Btu/ft . Thus, one therm is very nearly equal to 100 cubic feet of natural gas:
1 therm = 105 Btu / 1,030 Btu/ft = 97.1 ft ≈ 100 ft .
Power
Power is the term that is used to describe energy flow. Power is defined as “the time rate of doing work” and normally is measured in joules/second. In the SI system, the unit of power is the watt (W), named in honor of James Watt, inventor of the steam engine.
No separate unit is ascribed to power in the cgs system. In the USCS system, power is measured in “practical” units of horsepower (hp), where 1 hp = 550 ft-lbs/s. This is equivalent to 746 watts, or about 0.75 kW.
Perhaps because most electric appliances are rated in terms of their power requirements, power and energy are often confused when dealing with electrical energy. But just as when filling the tank of your car at the gas station you must ultimately pay for the total number of gallons pumped, not the rate at which you pumped it, so with electricity we pay for the total number of joules of electrical energy consumed, not the power or rate at which it was delivered.
In the U.S., electrical energy is usually measured in terms of kilowatt-hours (kWh), because this is a practical unit for the utility company as well as the customer. The relation between kilowatt-hours and joules is easy to determine:
1 kWh = 1,000 J/s x 3,600 s = 3.6 x 106 J.
Again, we see how small a joule is in practical terms. One kWh is the energy required to power ten 100-watt lightbulbs for one hour. The average home in the U.S. uses about 10,000 kWh of electrical energy per year.