IB0-1A: Indices
star
star
star
star
star
Last updated over 3 years ago
103 questions
Note from the author:
Index laws with integer indices.
#1
1
3^2 \times 3^5
3^2 \times 3^5
1
x^6 \times x^3
x^6 \times x^3
1
x^5 \times x^n
x^5 \times x^n
1
t^3 \times t^4 \times t^5
t^3 \times t^4 \times t^5
1
\dfrac{7^9}{7^5}
\dfrac{7^9}{7^5}
1
\dfrac{x^7}{x^3}
\dfrac{x^7}{x^3}
1
\dfrac{t^6}{t^x}
\dfrac{t^6}{t^x}
1
t^{3m} \div t
t^{3m} \div t
1
\left(5^3\right)^2
\left(5^3\right)^2
1
\left(t^4\right)^3
\left(t^4\right)^3
1
\left(y^3\right)^m
\left(y^3\right)^m
1
\left(a^{3m}\right)^4
\left(a^{3m}\right)^4
#2
1
121
121
1
32
32
1
81
81
1
4^2
4^2
1
25^2
25^2
1
7^t \times 49
7^t \times 49
1
3^a \div 9
3^a \div 9
1
8^p \div 4
8^p \div 4
1
\dfrac{7^n}{7^{n-2}}
\dfrac{7^n}{7^{n-2}}
1
\dfrac{9}{3^x}
\dfrac{9}{3^x}
1
\left(25^t\right)^2
\left(25^t\right)^2
1
16^{k-3} \times 2^{-k}
16^{k-3} \times 2^{-k}
1
\dfrac{4^a}{2^b}
\dfrac{4^a}{2^b}
1
\dfrac{8^x}{16^y}
\dfrac{8^x}{16^y}
1
\dfrac{125^{x+1}}{5^{x-1}}
\dfrac{125^{x+1}}{5^{x-1}}
1
\dfrac{27^{a+2}}{3^a \times 9^a}
\dfrac{27^{a+2}}{3^a \times 9^a}
#3
1
\left(xy\right)^2
\left(xy\right)^2
1
\left(ab\right)^3
\left(ab\right)^3
1
\left(xyz\right)^2
\left(xyz\right)^2
1
\left(3b\right)^3
\left(3b\right)^3
1
\left(5a\right)^4
\left(5a\right)^4
1
\left(10xy\right)^5
\left(10xy\right)^5
1
\left(\dfrac{p}{q}\right)^2
\left(\dfrac{p}{q}\right)^2
1
\left(\dfrac{x}{3}\right)^4
\left(\dfrac{x}{3}\right)^4
1
\left(\dfrac{5}{z}\right)^3
\left(\dfrac{5}{z}\right)^3
1
\left(\dfrac{2a}{b}\right)^4
\left(\dfrac{2a}{b}\right)^4
1
\left(\dfrac{3x}{4y}\right)^3
\left(\dfrac{3x}{4y}\right)^3
#4
1
4b^2 \times 2b^3
4b^2 \times 2b^3
1
\dfrac{a^6b^3}{a^4b}
\dfrac{a^6b^3}{a^4b}
1
3ab^2 \times 2a^3
3ab^2 \times 2a^3
1
\dfrac{5x^3y^2}{15xy}
\dfrac{5x^3y^2}{15xy}
1
\left(\dfrac{a^2}{5b}\right)^3
\left(\dfrac{a^2}{5b}\right)^3
1
\dfrac{24t^6 r^4}{15t^6 r^2}
\dfrac{24t^6 r^4}{15t^6 r^2}
1
\dfrac{\left(4c^3 d^2\right)^2}{c^2 d}
\dfrac{\left(4c^3 d^2\right)^2}{c^2 d}
1
\dfrac{10k^7}{(2k)^5}
\dfrac{10k^7}{(2k)^5}
#5
1
3^0
3^0
1
6^{-1}
6^{-1}
1
4^{-1}
4^{-1}
1
5^0
5^0
1
4^2
4^2
1
4^{-2}
4^{-2}
1
5^3
5^3
1
5^{-3}
5^{-3}
1
7^2
7^2
1
7^{-2}
7^{-2}
1
10^3
10^3
1
10^{-3}
10^{-3}
#6
1
\left(\dfrac{1}{2}\right)^0
\left(\dfrac{1}{2}\right)^0
1
\dfrac{5^4}{5^4}
\dfrac{5^4}{5^4}
1
2t^0, for t \neq 0.
2t^0, for t \neq 0.
1
\left(2t\right)^0, for t \neq 0.
\left(2t\right)^0, for t \neq 0.
1
7^0
7^0
1
3 \times 4^0
3 \times 4^0
1
\dfrac{5^3}{5^5}
\dfrac{5^3}{5^5}
1
\dfrac{2^6}{2^{10}}
\dfrac{2^6}{2^{10}}
1
\dfrac{x^4}{x^9}
\dfrac{x^4}{x^9}
1
\left(\dfrac{3}{8}\right)^{-1}
\left(\dfrac{3}{8}\right)^{-1}
1
\left(\dfrac{2}{3}\right)^{-1}
\left(\dfrac{2}{3}\right)^{-1}
1
\left(\dfrac{1}{5}\right)^{-1}
\left(\dfrac{1}{5}\right)^{-1}
1
2^{0}+2^{1}
2^{0}+2^{1}
1
5^{0} - 5^{-1}
5^{0} - 5^{-1}
1
3^{0} + 3^{1} - 3^{-1}
3^{0} + 3^{1} - 3^{-1}
1
\left(\dfrac{1}{3}\right)^{-2}
\left(\dfrac{1}{3}\right)^{-2}
1
\left(\dfrac{2}{3}\right)^{-3}
\left(\dfrac{2}{3}\right)^{-3}
1
\left(1\dfrac{1}{2}\right)^{-3}
\left(1\dfrac{1}{2}\right)^{-3}
1
\left(\dfrac{4}{5}\right)^{-2}
\left(\dfrac{4}{5}\right)^{-2}
1
\left(2\dfrac{1}{2}\right)^{-2}
\left(2\dfrac{1}{2}\right)^{-2}
#7
1
(3b)^{-1}
(3b)^{-1}
1
3b^{-1}
3b^{-1}
1
7a^{-1}
7a^{-1}
1
(7a)^{-1}
(7a)^{-1}
1
\left(\dfrac{1}{t}\right)^{-2}
\left(\dfrac{1}{t}\right)^{-2}
1
\left(\dfrac{3x}{y}\right)^{-1}
\left(\dfrac{3x}{y}\right)^{-1}
1
(5t)^{-2}
(5t)^{-2}
1
\left(5t^{-2}\right)^{-1}
\left(5t^{-2}\right)^{-1}
1
xy^{-1}
xy^{-1}
1
(xy)^{-1}
(xy)^{-1}
1
xy^{-3}
xy^{-3}
1
(xy)^{-3}
(xy)^{-3}
1
(3pq)^{-1}
(3pq)^{-1}
1
3(pq)^{-1}
3(pq)^{-1}
1
3pq^{-1}
3pq^{-1}
1
\dfrac{(xy)^3}{y^{-2}}
\dfrac{(xy)^3}{y^{-2}}
1
\left(5x^{-2}y^3\right)^3
\left(5x^{-2}y^3\right)^3
1
\left(\dfrac{c}{2d^3}\right)^{-2}
\left(\dfrac{c}{2d^3}\right)^{-2}
1
\left(\dfrac{3r^{-3}}{t}\right)^{-2}
\left(\dfrac{3r^{-3}}{t}\right)^{-2}
1
\left(\dfrac{2p}{5q^{-2}}\right)^{-3}
\left(\dfrac{2p}{5q^{-2}}\right)^{-3}
#8
1
\dfrac{1}{a^{-n}}=a^n
\dfrac{1}{a^{-n}}=a^n
1
\left(\dfrac{a}{b}\right)^{-n}=\dfrac{b^n}{a^n}
\left(\dfrac{a}{b}\right)^{-n}=\dfrac{b^n}{a^n}
#9
1
Find the smaller of 2^{125} and 3^{75} without a calculator.Hint: 2^{125} = (2^5)^{25}.
Find the smaller of 2^{125} and 3^{75} without a calculator.
Hint: 2^{125} = (2^5)^{25}.
#10
1
Order the following numbers, starting with smallest at the top and largest at the bottom. Do not use a calculator. Show your work to prove how you solved this problem.
Order the following numbers, starting with smallest at the top and largest at the bottom. Do not use a calculator. Show your work to prove how you solved this problem.
- 2^{90}
- 5^{36}
- 3^{60}
- 10^24