2.6 Worksheet
star
star
star
star
star
Last updated over 3 years ago
52 questions
1
If \angle{1} and \angle{2} are a linear pair, then m\angle{1} + m\angle{2} = 180o.
If \angle{1} and \angle{2} are a linear pair, then m\angle{1} + m\angle{2} = 180o.
1
If m\angle{3} = m\angle{4}, and m\angle{4} = m\angle{5}, then m\angle{3} = m\angle{5}
If m\angle{3} = m\angle{4}, and m\angle{4} = m\angle{5}, then m\angle{3} = m\angle{5}
1
XY = XY
XY = XY
1
If 3RT = 12, then RT = 4
If 3RT = 12, then RT = 4
1
If \angle{1} and \angle{2} are supplementary, then m\angle{1} + m\angle{2} = 180o.
If \angle{1} and \angle{2} are supplementary, then m\angle{1} + m\angle{2} = 180o.
1
AB + BD = AD
AB + BD = AD
1
If \overrightarrow{OY} is the bisector of \angle{EOT}, them m\angle{EOY} = m\angle{YOT}.
If \overrightarrow{OY} is the bisector of \angle{EOT}, them m\angle{EOY} = m\angle{YOT}.
1
If \angle{1} and \angle{2} are vertical angles, then m\angle{1} = m\angle{2}.
If \angle{1} and \angle{2} are vertical angles, then m\angle{1} = m\angle{2}.
1
If \angle{3} = \angle{4} , then \angle{3} \cong \angle{4}
If \angle{3} = \angle{4} , then \angle{3} \cong \angle{4}
1
If \angle{1} and \angle{2} are complementary, then m\angle{1} + m\angle{2} = 90o.
If \angle{1} and \angle{2} are complementary, then m\angle{1} + m\angle{2} = 90o.
1
If H is the midpoint of \overline{NM}, then NH = MH.
If H is the midpoint of \overline{NM}, then NH = MH.
1
If m\angle{AOD} = 70o, then m\angle{AOD} + 40o = 110o.
If m\angle{AOD} = 70o, then m\angle{AOD} + 40o = 110o.
1
If \overleftrightarrow{YI} and \overleftrightarrow{ER} intersect and form right angles, then they are perpendicular.
If \overleftrightarrow{YI} and \overleftrightarrow{ER} intersect and form right angles, then they are perpendicular.
1
If m\angle{6} and m\angle{7} are supplementary and m\angle{5} and m\angle{7} are supplementary, then m\angle{6} \cong m\angle{5}.
If m\angle{6} and m\angle{7} are supplementary and m\angle{5} and m\angle{7} are supplementary, then m\angle{6} \cong m\angle{5}.
1
If m\angle{1} and m\angle{2} are right angles, then m\angle{1} \cong m\angle{2}.
If m\angle{1} and m\angle{2} are right angles, then m\angle{1} \cong m\angle{2}.
1
If XY = OP, then OP = XY
If XY = OP, then OP = XY
1
If \angle{A} and \angle{B} are complements and \angle{B} and \angle{C} are complements, then \angle{A} \cong \angle{C}
If \angle{A} and \angle{B} are complements and \angle{B} and \angle{C} are complements, then \angle{A} \cong \angle{C}
1
AB + AB = 2(AB)
AB + AB = 2(AB)
1
If \angle{1} and \angle{2} are a linear pair, then m\angle{1} + m\angle{2} = 180o.
If \angle{1} and \angle{2} are a linear pair, then m\angle{1} + m\angle{2} = 180o.
1
6(AB + CD) = 6AB + 6CD
6(AB + CD) = 6AB + 6CD
1
If \angle{JKL} and \angle{OKP} are vertical angles, then m\angle{JKL}= m\angle{OKP}
If \angle{JKL} and \angle{OKP} are vertical angles, then m\angle{JKL}= m\angle{OKP}
Complete the proof below:
1
Reason #1
Reason #1
1
Reason #2
Reason #2
1
Reason #3
Reason #3
1
Reason #4
Reason #4
1
Reason #5
Reason #5
1
Reason #6
Reason #6
1
Reason #7
Reason #7
1
Reason #8
Reason #8
Complete the proof below:
1
Reason #1
Reason #1
1
Reason #2
Reason #2
1
Reason #3
Reason #3
1
Reason #4
Reason #4
1
Reason #5
Reason #5
Complete the proof below:
1
Reason #1
Reason #1
1
Reason #2
Reason #2
1
Reason #3
Reason #3
1
Reason #4
Reason #4
1
Reason #5
Reason #5
1
Reason #6
Reason #6
Complete the proof below:
1
Reason #1
Reason #1
1
Reason #2
Reason #2
1
Reason #3
Reason #3
1
Reason #4
Reason #4
1
Reason #5
Reason #5
1
Reason #6
Reason #6
1
Reason #7
Reason #7
1
Put the statements in the correct order to complete the proof.
Put the statements in the correct order to complete the proof.
- \angle{1} \cong \angle{2}
- \angle{3} \cong \angle{4}
- \angle{2} \cong \angle{3}
- \angle{1} \cong \angle{4}
Using the correct order of the proof completed above, state the reasons for each step.
1
Reason #1
Reason #1
1
Reason #2
Reason #2
1
Reason #3
Reason #3
1
Reason #4
Reason #4