2.6 Worksheet

Last updated over 3 years ago
52 questions
For questions #1-21, identify the property, postulate, or definition that is shown.
1

If \angle{1} and \angle{2} are a linear pair, then m\angle{1} + m\angle{2} = 180o.

1

If m\angle{3} = m\angle{4}, and m\angle{4} = m\angle{5}, then m\angle{3} = m\angle{5}

1

XY = XY

1

If 3RT = 12, then RT = 4

1

If \angle{1} and \angle{2} are supplementary, then m\angle{1} + m\angle{2} = 180o.

1

AB + BD = AD

1

If \overrightarrow{OY} is the bisector of \angle{EOT}, them m\angle{EOY} = m\angle{YOT}.

1

If \angle{1} and \angle{2} are vertical angles, then m\angle{1} = m\angle{2}.

1

If \angle{3} = \angle{4} , then \angle{3} \cong \angle{4}

1

If \angle{1} and \angle{2} are complementary, then m\angle{1} + m\angle{2} = 90o.

1

If H is the midpoint of \overline{NM}, then NH = MH.

1

If m\angle{AOD} = 70o, then m\angle{AOD} + 40o = 110o.

1

If \overleftrightarrow{YI} and \overleftrightarrow{ER} intersect and form right angles, then they are perpendicular.

1

If m\angle{6} and m\angle{7} are supplementary and m\angle{5} and m\angle{7} are supplementary, then m\angle{6} \cong m\angle{5}.

1

If m\angle{1} and m\angle{2} are right angles, then m\angle{1} \cong m\angle{2}.

1

If XY = OP, then OP = XY

1

If \angle{A} and \angle{B} are complements and \angle{B} and \angle{C} are complements, then \angle{A} \cong \angle{C}

1

AB + AB = 2(AB)

1

If \angle{1} and \angle{2} are a linear pair, then m\angle{1} + m\angle{2} = 180o.

1

6(AB + CD) = 6AB + 6CD

1

If \angle{JKL} and \angle{OKP} are vertical angles, then m\angle{JKL}= m\angle{OKP}

Complete the proof below:
1

Reason #1

1

Reason #2

1

Reason #3

1

Reason #4

1

Reason #5

1

Reason #6

1

Reason #7

1

Reason #8

Complete the proof below:
1

Reason #1

1

Reason #2

1

Reason #3

1

Reason #4

1

Reason #5

Complete the proof below:
1

Reason #1

1

Reason #2

1

Reason #3

1

Reason #4

1

Reason #5

1

Reason #6

Complete the proof below:
1

Reason #1

1

Reason #2

1

Reason #3

1

Reason #4

1

Reason #5

1

Reason #6

1

Reason #7

1

Put the statements in the correct order to complete the proof.

  1. \angle{1} \cong \angle{2}
  2. \angle{3} \cong \angle{4}
  3. \angle{2} \cong \angle{3}
  4. \angle{1} \cong \angle{4}
Using the correct order of the proof completed above, state the reasons for each step.
1

Reason #1

1

Reason #2

1

Reason #3

1

Reason #4