Classwork 2021-03-29
star
star
star
star
star
Last updated about 2 years ago
5 questions
1
| Draggable item | arrow_right_alt | Corresponding Item |
|---|---|---|
x^{9}+x^{-4} | arrow_right_alt | x^6 |
\frac{x^{11}}{x^{11}} | arrow_right_alt | x^8 |
x^{4}x^{2} | arrow_right_alt | x^{-2} |
\frac{x^3}{x^5} | arrow_right_alt | 1 |
x^0 | arrow_right_alt | 1 |
x^{9}x^{-4} | arrow_right_alt | x^{9}+x^{-4} |
(x^{4})^2 | arrow_right_alt | x^5 |
1
Use1) The definition of exponentaiton:a^{b}=a\cdot a\cdot a \cdot ... \cdot a, b times2) The commutativity of multiplicationab=ba3) the associativity of multiplicationabc=a(bc)=(ab)cTo Prove(ab)^{n}=a^{n}b^{n}
Use
1) The definition of exponentaiton:
a^{b}=a\cdot a\cdot a \cdot ... \cdot a, b times
2) The commutativity of multiplication
ab=ba
3) the associativity of multiplication
abc=a(bc)=(ab)c
To Prove
(ab)^{n}=a^{n}b^{n}
1
Use1) The definition of exponentaiton:a^{b}=a\cdot a\cdot a \cdot ... \cdot a, b times)2) The rule for multiplying fractions:\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}To Prove(\frac{a}{b})^{n}=\frac{a^n}{b^n}
Use
1) The definition of exponentaiton:
a^{b}=a\cdot a\cdot a \cdot ... \cdot a, b times)
2) The rule for multiplying fractions:
\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}
To Prove
(\frac{a}{b})^{n}=\frac{a^n}{b^n}
1
Which of the following rules are true?
Which of the following rules are true?
1
Decide if the statement of equality is true or false. Use the "show your work" box to prove or explain your answer.
(\frac{b}{a})^{-1}=\frac{a}{b}
Decide if the statement of equality is true or false. Use the "show your work" box to prove or explain your answer.
(\frac{b}{a})^{-1}=\frac{a}{b}