3.8 Homework Day 1 Graphing Absolution Value Functions

Last updated almost 2 years ago
8 questions
9
Determine the requested information from the graph:

The function is positive: _______ (everywhere or nowhere)

The function is negative over the domain:
_______ {\lt x \lt}_______

The function is increasing over the domain:
_______ \lt x \lt_______

The function is decreasing over the domain:
_______ {\lt x \lt}_______

End Behavior:
{as \space x \rightarrow -\infty \space , \space y \rightarrow}_______
{as \space x \rightarrow \infty \space , \space y \rightarrow}_______
10
Determine the requested information from the graph:

The function is positive over the domain:
_______ {\lt x \lt}_______

The function is negative over the domain:
{x \lt}_______ and { x \gt}_______

The function is increasing over the domain:
_______ \lt x \lt_______

The function is decreasing over the domain:
_______ {\lt x \lt}_______

End Behavior:
{as \space x \rightarrow -\infty \space , \space y \rightarrow}_______
{as \space x \rightarrow \infty \space , \space y \rightarrow}_______
4
Graph the function on paper: {r(x)=|x|+5}

What is the domain? _______ {\lt x \lt}_______

What is the range? { y \ge}_______

Upload your graph below: _______ (Leave this box empty)
4
Graph the function on paper: {r(x)=|x-3|}

What is the domain? _______ {\lt x \lt}_______

What is the range? { y \ge}_______

Upload your graph below: _______ (Leave this box empty)
4
Graph the function on paper: {j(x)=3|x|}

What is the domain? _______ {\lt x \lt}_______

What is the range? { y \ge}_______

Upload your graph below: _______ (Leave this box empty)
1
Write an equation that represents the given transformation of the graph of {g(x) = ∣ x ∣}.

Horizontal translation 10 units left;

{g(x)=} _______
1
Write an equation that represents the given transformation of the graph of {g(x) = ∣ x ∣}.

Reflection in the y-axis;

{g(x)=} _______
1
Write an equation that represents the given transformation of the graph of {g(x) = ∣ x ∣}.

Horizontal stretch by a factor of 3;

{g(x)=} _______