3.3 Assignment (Module 4 Topic 2)
star
star
star
star
star
Last updated over 1 year ago
10 questions
1
{f(x)=\sqrt[3]{x+5}-4}
{f(x)=\sqrt[3]{x+5}-4}
1
{g(x)=\sqrt[3]{x-11}+6}
{g(x)=\sqrt[3]{x-11}+6}
1
{g(x)=-2\sqrt{x}+4}
{g(x)=-2\sqrt{x}+4}
1
{h(x)=\frac{1}{2}\sqrt{x-9}}
{h(x)=\frac{1}{2}\sqrt{x-9}}
1
{j(x)=-\frac{1}{3}\sqrt[3]{x}-1}
{j(x)=-\frac{1}{3}\sqrt[3]{x}-1}
1
{f(x)=\sqrt{x}}Translate {f(x)} right 5 units and up 1 unit
{f(x)=\sqrt{x}}
Translate {f(x)} right 5 units and up 1 unit
1
{g(x)=\sqrt[3]{x}}Translate {g(x)} left 6 units and down 11 units
{g(x)=\sqrt[3]{x}}
Translate {g(x)} left 6 units and down 11 units
1
{f(x)=\sqrt{x}}Translate {f(x)} up 7 units, and vertically stretch by a factor of 2
{f(x)=\sqrt{x}}
Translate {f(x)} up 7 units, and vertically stretch by a factor of 2
1
{g(x)=\sqrt[3]{x}}Reflect {g(x)} over the x-axis, and translate 8 units right
{g(x)=\sqrt[3]{x}}
Reflect {g(x)} over the x-axis, and translate 8 units right
1
{f(x)=\sqrt{x}}Reflect {f(x)} over the x-axis, vertically compress by a factor of \frac{1}{3}, and translate left 3 units
{f(x)=\sqrt{x}}
Reflect {f(x)} over the x-axis, vertically compress by a factor of \frac{1}{3}, and translate left 3 units